CONTROL PANEL FOR 24 V GEARMOTORS

MILANO 2015 FEEDING THE PLANET ENERGY FOR LIFE

LEGEND

1 Dad This symbol shows which parts to read carefully.
\triangle This symbol shows which parts describe safety issues
This symbol shows which parts to tell users about.

REFERENCE REGULATIONS

Came S.p.A. is certified for its ISO 9001 quality and ISO 14001 environmental management systems.
This product complies with the current regulations mentioned in the declaration of conformity.

DESCRIPTION

Multifunction control panel for two leaved swing-gates, with graphic programming-display and warning and self-diagnosing safety devices.
The functions on the input and output contacts, the time settings and user management, are set and viewed on the graphic display. All connections are quick-fuse protected.

Intended use

Control panel	Gearmotor
ZLJ24 AMICO - AXO - F4000-FAST - FERNI - FROG - FROG J - MYTO	

(1a) Any installation and/or use other than that specified in this manual is forbidden.

Technical data

Type	ZLJ24	
Protection rating (IP)	54	
Power supply (V-50/60 Hz)	230 AC	
Maximum power (W)	500	
Maximum power of the $24 \mathrm{~V}(\mathrm{~W})$ accessories	50	
Stand-by consumption (W)	10	
Operating temperature (${ }^{\circ} \mathrm{C}$)	$-20 \div+55$	
Material	ABS	
Insulation class	\\|	
Fuses	ZLJ24	
LINE-FUSE - Line	3.15 A-F	
CONTROL BOARD - Card	600 mA -F	
ACCESSORIES - Accessories	2 A-F	
MOTOR 1 / MOTOR 2 - Motor	10 A - 250 V Ø 6.3×22 UFG632310 (Spare parts code 119RIR316)	
E.LOCK - Electric lock	3.15 A-F	

Dimensions (mm)

Description of parts

1. Transformer
2. Power supply on warning LED
3. Display
4. Programming buttons
5. Display brightness adjusting trimmer
6. Programming warning LED
7. Memory roll board connector
8. Connector for the R700 card
9. AF card connector
10. Antenna terminal
11. Transponder terminals
12. Endstop terminals
13. Terminals for control and safety devices
14. Terminals for gearmotors
15. Encoder terminals
16. Power supply terminals
17. Line fuse
18. Motor fuse
19. Electric lock fuse
20. Control board fuse
21. Accessories fuse
22. RSE board connector
23. CRP connection terminals

GENERAL INSTRUCTIONS FOR INSTALLING

\triangle Only skilled, qualified staff must install this product.
\triangle Before working on the control panel, cut off the main current supply and, if present, remove any batteries.

Preliminary checks

\triangle Before installing the control panel, it is necessary to:

- make sure that the point where the control panel is fastened is protected from any impacts and that the anchoring surface is solid enough, and that proper tools are used (screws, anchors, etc.); • make sure you have set up a suitable dual pole cut off device along the power supply that is compliant with the installation rules. It should completely cut off the power supply according to category III surcharge conditions (that is, with minimum contact openings of 3 mm);
$\bullet \oplus$ Make sure that any connections inside the container (ones that ensure continuity to the protection circuit) are fitted with additional insulation compared to those of other electrical parts inside.

Tools and materials

Make sure you have all the tools and materials you will need for installing in total safety and in compliance with applicable regulations. The figure shows some of the equipment installers will need.

Cable types and minimum thicknesses

Connection	Cable type	Cable length $1<10 \mathrm{~m}$	Cable length $10<20 \mathrm{~m}$	Cable length $20<30 \mathrm{~m}$
Control panel power-supply	$\begin{gathered} \text { FROR CEI 20-22 } \\ \text { CEI EN } \\ 50267-2-1 \end{gathered}$	$2 \times 1.5 \mathrm{~mm}^{2}$	$2 \times 1.5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$
Encoder gearmotor power supply*		$3 \times 1.5 \mathrm{~mm}^{2}$	$3 \times 1.5 \mathrm{~mm}^{2}$	$3 \times 2.5 \mathrm{~mm}^{2}$
Power supply to gearmotor**		$2 \times 1.5 \mathrm{~mm}^{2}$	$2 \times 1.5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$
Flashing light			$2 \times 0.5 \mathrm{~mm}^{2}$	
Photocell transmitters			$2 \times 0.5 \mathrm{~mm}^{2}$	
Photocell receivers			$4 \times 0.5 \mathrm{~mm}^{2}$	
Command and safety device			$2 \times 0.5 \mathrm{~mm}^{2}$	
Endstop***			$3 \times 0.5 \mathrm{~mm}^{2}$	
Antenna	RG58		max 10 m	
Encoder****	2402C 22AWG		max 30 m	
Paired connection or CRP	UTP CAT5		max 1000 m	

*AX0 ** FROG-A24, F4024, F1024, FROG-A24E, F7024E *** FROG-A24, F4024, F1024 **** FROG-A24E, F7024E, F4024E
[10] If cable lengths differ from those specified in the table, establish the cable sections depending on the actual power draw of the connected devices and according to the provisions of regulation CEI EN 60204-1.
For multiple, sequential loads along the same line, the dimensions on the table need to be recalculated according to the actual power draw and distances. For connecting products that are not contemplated in this manual, see the literature accompanying said products

INSTALLATION

Fasten the control panel in a protected area using suitable screws. anchors and braces.
Drill through the pre-perforated holes and fit the cable gland with corrugated pipes for passing through the electric cables.
[10] Pre-perforated hole diameter: 20 mm .

Assemble the pressure hinges.
Fit the hinges into the box (either on the right or left) and fasten them using the supplied screws and washers.

Snap the cover onto the hinges. Close it and secure it using the supplied screws.
After the settings and adjustments, fasten the cover using the supplied screws.

ELECTRICAL CONNECTIONS

Power supply to accesso-

ries

Terminal board for 24 V AC
/ DC accessories - Maximum power: 50 W

230 V AC - $50 / 60 \mathrm{~Hz}$
Possible output of the second radio-receiver channel (NO contact).

Contact rated for: $500 \mathrm{~mA}-24 \mathrm{~V}$ DC.

Connecting the gearmotors with endstops

M1-24 V DC gearmotor with delayed opening.

M2-24 V DC gearmotor with delayed closing.

Connecting the encoder gearmotors

M1-24 V DC gearmotor with delayed opening.

Command and control devices

\triangle Before fitting any snap-in cards (such as the AF or R700), YOU MUST CUT OFF MAINS POWER, and , if present, disconnect the batteries.

Stop button (NC contact). For stopping the gate leaves while excluding automatic closing. To resume movement press the control button or use another control device.
©a If unused, select [Disabled] from the [Total Stop] function in the [FUNCTIONS] menu.

OPEN ONLY function from control device (NO contact).

PARTIAL or PEDESTRIAN OPENING function from a control device (NO contact).
See the [Cmd 2-3P] function in the [FUNCTIONS] menu.

CLOSE ONLY function from control device (NO contact).

OPEN-STOP-CLOSE-STOP sequential function / OPEN-CLOSE-INVERT step-step from a control device (NO contact).
See the [Cmd 2-7] function in the [FUNCTIONS] menu.

Warning devices

Flashing light (contact rated for: $24 \mathrm{~V}-25 \mathrm{~W}$ max). Flashes when the gate is opening and closing.
Alternatively, you can connect up a cycle or courtesy light (contact rated for: $24 \mathrm{~V}-25 \mathrm{~W} \max$).
Auxiliary connection of an outdoor light which can be positioned where you like, to increase lighting in the driveway/parking area. Cycle: it stays lit from the moment that the gate leaf starts opening until it is completely closed (including the automatic closing time). Courtesy: it stays on for a fixed time of five minutes. See the [Lamp E] function in the [FUNCTIONS] menu.

Safety devices

Photocells

Configure contact CX, CY or CZ (NC), input for EN 12978 safety devices like photocells.
See the [CX input], [CY input] or [CZ input] functions.

- C1 reopening during closing. When the gate leaves are closing, opening the contact causes their movement to invert, until they are fully opened;
- C2 reclosing opening. When the gate leaves are opening, opening the contact causes their movement to invert, until they are fully closed;

- C3 partial stop. Stops the gate leaves, if they are moving, and turns on automatic closing (if the automatic closing function is on);
- C4 obstacle wait. Stops the gate leaves, and resumes their movement once the obstruction is removed.

ICal If unused, contacts CX, CY and CZ should be disabled during programming.

Sensitive Safety Edges

Configure contact CX, CY or CZ (NC), input for EN 12978 safety devices such as sensitive safetyedges.
See the [CX input], [CY input] or [CZ input] functions.

- C 7 reopening during closing. When the gate leaves are closing, opening the contact causes their movement to invert, until they are fully opened;
- C8 reclosing during opening. When the gate leaves are opening, opening the contact inverts their movement until they are fully closed.
[al If unused, contacts CX, CY and CZ should be disabled during programming.

Photocell's safety connection

At each opening and closing, the card checks whether the photocells are working. Any anomalies will inhibit all commands.
Select from the [Safety Test] function which of inputs CX, CY or CZ to turn on.

Connection with Came Remote Protocol (CRP)

Meaning of the menu items abbreviations

[Run Amperom]	Gate Run Sensitivity
[Ped. opening]	Partial Opening
[Maintained Act]	Maintained Action
[Autoclose]	Automatic Closing
[Config]	Configuration
[Related Func.]	Related Function
[Imp.Run]	Set gate run
[M1 Appr. AP \%]	M1 Opening approach as a percentage
[M1 Appr. CH \%]	M1 Closing approach as a percentage
[M1 Slow.AP \%]	M1 Opening slowdown as a percentage
[M1 Slow.CH \%]	M1 Closing slowdown as a percentage
[M2 Appr. AP \%]	M2 Opening approach as a percentage
[M2 Appr. CH \%]	M2 Closing approach as a percentage
[M2 Slow. AP \%]	M2 Opening slowdown as a percentage
[M2 Slow.CH \%]	M2 Closing slowdown as a percentage
[Mod Code]	Modify code
[Standby Msg]	Standby message
[No. Motors]	Number of motors
[Soft Start]	Soft Start
[Slow run Enc]	Opening and closing slow-downs with ENCODER
[Obstacle Det]	Obstacle Detection
[Remove Usr.]	Remove User
[Op. Delay M1]	M1 Opening Delay
[Cl. Delay M2]	M2 Closing Delay
[Sens.Amperom]	Amperometric Sensitivity
[Run Amperom]	Run Sensitivity
[Dec. Amperom]	Slowdown sensitivity
[Cl. Thrust]	Closing thrust
[Ram hit time]	Ram-jolt Time
[Preflashing T.]	Preflashing Time
[Slow down time]	Slow-down Time
[Lock time]	Lack Time
[A.C.T.]	Automatic Closing Time
[Pedestrian ACT]	Pedestrian Automatic Closing Time
[Slow Down Spd.]	Slowdown Speed
[High speed \%]	Gate run speed

Menu map

[LANGUAGE]		Default
[Italiano] / [English] / [/ [Deutsch] / [Español] / [Portugues euro]/[Portugues bras]	English
[FUNCTIONS]		Default
[AutoClose]	[Disabled] / [Turn on]	[Turn on]
[Maintained Act]	[Disabled] / [Turn on] / [When closing]	[Disabled]
[0bstacle Det]	[Disabled] / [Turn on]	[Disabled]
[Safety Test]	[Disabled] / [CX] / [CY] / [CZ] / [CX+CY] / [CX+CZ] / [CY+CZ] / [CX+CY+CZ]	[Disabled]
[Pre-flashing]	[Disabled] / [Turn on]	[Disabled]
[Ram hit funct]	[Disabled] / [Closing] / [Opening] / [Open-Close]	[Disabled]
[Total Stop]	[Disabled] / [Turn on]	[Turn on]
[CX input]	[Disabled] / [C1] / [C2] / [C2] / [C4] / [C7] / [C8]	[C1]
[CY input]	[Disabled] / [C1] / [C2] / [C2] / [C4] / [C7] / [C8]	[C3]
[CZ input]	[Disabled] / [C1] / [C2] / [C2] / [C4] / [C7] / [C8]	[Disabled]
[Cl. Thrust]	[Disabled] / [Turn on]	[Disabled]
[Lock]	[Disabled] / [Closing] / [Opening] / [Open-Close]	[Disabled]
[Config]	[Time of Run] / [Endstop] / [Slow run] / [Fcap-RallCh] / [ENCODER]	[ENCODER]
[Endstop]	[N.C. / N.O.]	[N.C.]
[Cmd 2-7]	[Open-Close] / [Op-Stop-Cl.]	[Open-Close]
[Cmd 2-3P]	[Partial] / [Pedestrian]	[Pedestrian]
[Lamp E]	[FI. light] / [Courtesy] / [Cycle]	[FI. light]
[Output B1-B2]	[Bistable] / [Monostable]	[Bistable]
[CRP address]	[1] \Rightarrow [32]	
[CRP baudrate]	[1200]/[2400]/[4800]/[9600]/[19200]/[38400]/ [57600]/ [115200]	[38400]
[IMP.RUN]		Default
[No. Motors]	[M1+M2] / [M2];	[M1+M2]
[Motor Type]	[FROG-F4024E] / [FROG J] / [FROG-FL] / [AMICO] / [MYTO] / [AXO] / [FAST] / [FERNI]	[FROG-F4024E]
[High speed \%]	[20\%] \Rightarrow [100\%]	[100\%]
[Slow Down Spd. \%]	$[5 \%] \Rightarrow[80 \%]$	[80\%]
[Soft Start]	[Turn on] / [Disabled]	[Disabled]
[Sens.Amperom]*	[Turn on] / [Disabled]	[Turn on]
${ }^{[R 120}$ Amperom] ${ }^{*}{ }^{*}$		- Ө○○○○○。+]
[Slow down time]**	[0 s$] \Rightarrow[30 \mathrm{~s}]$	[20 s]

[TIMING ADJ

[A.C.T.]
[Pedestrian ACT]
[Cycle Time]
[Op. Delay M1]
[Cl. Delay M2]
[Preflashing T]
[Lock time]
[Ram hit time]
[Ped.opening]

$[0 \mathrm{~s}] \Rightarrow[300 \mathrm{~s}]$	$[10 \mathrm{~s}]$
$[0 \mathrm{~s}] \Rightarrow[300 \mathrm{~s}]$	$[10 \mathrm{~s}]$
$[10 \mathrm{~s}] \Rightarrow[150 \mathrm{~s}]$	$[90 \mathrm{~s}]$
$[0 \mathrm{~s}] \Rightarrow[10 \mathrm{~s}]$	$[2 \mathrm{~s}]$
$[0 \mathrm{~s}] \Rightarrow[60 \mathrm{~s}]$	$[2 \mathrm{~s}]$
$[1 \mathrm{~s}] \Rightarrow[60 \mathrm{~s}]$	$[5 \mathrm{~s}]$
$[1 \mathrm{~s}] \Rightarrow[5 \mathrm{~s}]$	$[2 \mathrm{~s}]$
$[1 \mathrm{~s}] \Rightarrow[3 \mathrm{~s}]$	$[1 \mathrm{~s}]$
$[5 \mathrm{~s}] \Rightarrow[60 \mathrm{~s}]$	$[10 \mathrm{~s}]$

[USERS]

[Add User] (250 max)
[Mod. name]
[Mod. Code]
[Related Func.] [2-7]/ [Open] / [B1-B2] / [2-3P] / [Disabled];
[Remove Usr]
[Delete all Usr] [Confirm? (no)] / [Confirm? (yes)]
[Backup data]
$[$ Confirm? (no)] / [Confirm? (yes)]
[Restore backup]
[Confirm? (no)] / [Confirm? (yes)]

[INFO]

[Version] / [No. of Runs] / [Standby msg.] / [System Reset]

[MOT TEST]

$$
[<=\mathrm{M} 1 \mathrm{M} 2=>]
$$

[Obstacle Det] [Disabled] / [Turn on]

With the gate leaves are closed, open or after a total stop, the operator stays idle if the safety devices (photocells and sensitive safety-edges) detect an obstruction.
[Safety Test] [Disabled] / [CX] / [CY] / [CZ] / [CX+CY] / [CX+CZ] / [CY+CZ] / [CX+CY+CZ]

After every opening or closing command, the board will check whether the photocells are working properly.

[Preflashing]
 [Disabled] / [Turn on]

After an opening or closing command, the flashing light connected to 10-E, flashes before the maneuver starts. To set the time, see [Preflashing T] in the [TIMING ADJ] menu.

[Ram hit funct] [Disabled] / [Closing] / [Opening] / [Open-Close]

Before any opening and closing maneuver, the gate leaves thrust inward to help release the electric lock. To adjust this thrust time, select [Ram hit time] in the [TIMING ADJ] menu.
[Total Stop] [Turn on] / [Disabled]

NC input - Gate- leaves stop with automatic closing excluded; to resume movement, use the control device. The safety device must be enabled on [1-2].

[CX Input] [Disabled] / [C1] / [C2] / [C3] / [C4] / [C7] / [C8]

NC input - Can associate: C1 = reopening during closing by photocells, $\mathrm{C} 2=$ reclosing during opening by photocells, $\mathrm{C} 3=$ partial stop, C 4 $=$ obstruction wait, $\mathrm{C7}=$ reopening during closing by sensitive safety-edges, $\mathrm{C} 8=$ reclosing during opening by sensitive safety-edges.

[CY input] [Disabled] / [C1] / [C2] / [C3] / [C4] / [C7] / [C8]

NC input - Can associate: C1 = reopening during closing by photocells, $\mathrm{C} 2=$ reclosing during opening by photocells, C3 $=$ partial stop, C4 $=$ obstruction wait, $\mathrm{C7}=$ reopening during closing by sensitive safety-edges, $\mathrm{C}=$ reclosing during opening by sensitive safety-edges.

[CZ input]

[Disabled] / [C1] / [C2] / [C3] / [C4] / [C7] / [C8]
NC input - Can associate: C1 = reopening during closing by photocells, C2 = reclosing during opening by photocells, C3 $=$ partial stop, C4 $=$ obstruction wait, $\mathrm{C7}=$ reopening during closing by sensitive safety-edges, $\mathrm{C} 8=$ reclosing during opening by sensitive safety-edges.

[CRP address] $\quad[1] \Rightarrow$ [32]

With systems fitted with several operators and the CRP (Came Remote Protocol) system connection, set an address between 1 and 32 for each control panel.
[CRP baudrate] [1200] / [2400] / [4800] / [9600] / [19200] / [38400] / [57600] / [115200]

Setting the communication speed used in the CRP (Came Remote Protocol) connection system.

Gate run setting menu

ENCODER menu

$\mathbb{1}$ The [ENCODER] menu only appears when [Config] is selected in the [FUNCTIONS] menu.

[Sensibility] [Turn on] / [Disabled]

Obstruction detection sensitivity.
[Sensib. Run] [-०००००००००००。+]

Obstruction detection sensitivity during gate run (both opening and closing).
[al You need to turn on [Sensitivity] in the [ENCODER] menu.
[Sensib. Decel]
$[-\bigcirc \circ \circ+]$
Obstruction detection sensitivity during slow-down (both opening and closing).
Cll You need to turn on [Sensitivity] in the [ENCODER] menu.

$$
\text { [Slow run Enc] } \quad[\mathrm{ON}] /[\mathrm{OFF}]
$$

Activating the opening and closing slowdown starting points.

[M1 Slow.AP \%] $\quad[1 \%] \Rightarrow[60 \%]$

Adjusting the M1 slowdown starting point before the opening endstop.
The slowdown starting point is calculated as a percentage (from 1% to 60% of the complete gate leaf run).
1×1 This function only appears if the [Slow run Enc] function is selected in the [ENCODER] menu.

[M1 Slow. CH \%] $\quad[1 \%] \Rightarrow[60 \%]$

Adjusting the M1 slowdown starting point before the closing endstop.
The slowdown starting point is calculated as a percentage (from 1% to 60% of the complete gate leaf run).
[1] This function only appears if the [Enc. Slwdwn.] function in the [ENCODER] menu.

[M2 Appr. AP \%]
 $[1 \%] \Rightarrow[60 \%]$

Adjusting the M2 slowdown starting point before the opening endstop.
The slowdown starting point is calculated as a percentage (from 1% to 60% of the complete gate leaf run).
[a] This function only appears if the [Enc. SIwdwn.] function in the [ENCODER] menu.

[M2 Slow. CH \%] $\quad[1 \%] \Rightarrow[60 \%]$

Adjusting the M2 slowdown starting point before the closing endstop.
The slowdown starting point is calculated as a percentage (from 1% to 60% of the complete gate leaf run).
Mad This function only appears if the [Enc. SIwdwn.] function in the [ENCODER] menu.
[M1 Appr. CH \%] [1\%] \Rightarrow [15\%]
The M1 approach starting point is calculated as a percentage (from 1% to 15% of the complete gate leaf run) before the closing endstop.
[M2 Appr. CH \%] $\quad[1 \%] \Rightarrow[15 \%]$

The M2 resting starting point is calculated as a percentage (from 1% to 15% of the complete gate-leaf run) before the closing endstop.
[M1 Appr. AP \%] $\quad[1 \%] \Rightarrow[15 \%]$
The M1 approach starting point is calculated as a percentage (from 1% to 15% of the complete gate-leaf run) before the opening endstop.
[M2 Appr. AP \%] $[1 \%] \Rightarrow[15 \%]$
The M2 approach starting point is calculated as a percentage (from 1% to 15% of the complete gate-leaf run) before the opening endstop.

[Set Encoder]

Automatic calibration of the gate leaf run (see the CALIBRATING GATE LEAF RUN paragraph).

Time settings menu

[Ped.opening] [5 s] \Rightarrow [60 s]

M2 opening time. The time can be adjusted to between five seconds and 60 seconds.

[Add User]
Entering up to 250 users and associating a function from those available with each one. The entering must be done via transmitter or other control device (see paragraph on ENTERING NEW USERS). [Mod. name] For modifying the user number or name [Mod. Code] To modify the command code that is associated to a user. [Related Func] [2-7] $\quad \Rightarrow$ Step-step command (open-close) or sequential command (open-stop-close-stop) [Opens] $\quad \Rightarrow$ Open only command [2-3P] $\quad \Rightarrow$ Pedestrian or partial opening [B1-B2] \Rightarrow Contact B1-B2 output [Remove Usr] To remove a user. Confirm removal with ENTER. [Delete all Usr] To remove all users. Confirm removal with ENTER. [Backup data] To save system users and settings in memory roll. Confirm saving with ENTER. [Restore backup] For uploading the data saved in the memory roll onto the electronic board. [Dal If the boards feature different versions, you may only upload the users.

Info menu

| [Version] |
| :--- | :--- |
| View software version. |
| [No. of Runs] |
| View the number of completed maneuvers. |
| [Standby Msg.] |
| View standby message. To edit the text, press ENTER. Use ENTER to move the cursor forward, ESC for moving the cursor backward and $<$
 $>$ to select the letter or figure. Confirm text by pressing the ENTER key for some seconds.
 [System Reset]
 To restore the initial settings. Press ENTER to confirm the reset. |

Motors Test menu

For checking the proper rotation direction of the gearmotors.
Keep the < key pressed for some seconds and check that the M1 leaf has opened. If the rotation direction is wrong, invert the motor's phases. Keep the > key pressed for some seconds and check that the M2 leaf has opened. If the rotation direction is wrong, invert the motor's phases.

1. From the

 [USERS] menu, select the [Add User] function. Press ENTER to confirm.3. Select the function to associate to users. Press ENTER to confirm...
4. Once the code is entered, the user number will appear with the memorized number ...

Modify user name

1. From the [USERS] menu, select [Change Name]. Press ENTER to confirm

2. Use ENTER to move the cursor forward, ESC for moving the cursor backward and $<>$ to select the letter or figure.

3. Press ENTER for a few seconds to confirm the text.

4. From the [USERS] menu, select [Change Code]. Press
ENTER to confirm

5. Select the user name whose code you want to modify and press ENTER to confirm.
6. ... once the code is entered, the user number and type of memorized command
 will appear..
7. Select [confirm (yes)] and press ENTER to confirm.

8. Select the user name for which you want to change the function and press ENTER to confirm.

9. Select [confirm
(yes)] and press ENTER to confirm.

Travel calibration

\triangle Before calibrating the gate run, check that the maneuvering area is free from any obstruction and that there are both opening and closing mechanical stops.
\triangle The mechanical end-stops are obligatory.
Important! During the calibration, all safety devices will be disabled except for the PARTIAL STOP one.

1. From the [ENCODER] menu, select [Travel calibr]. Press ENTER to confirm

2. Select [confirm (yes)] and press ENTER to confirm.

3. The M1 gate leaf will perform a new closing until it completely stops...

4. ... and then the M2 gate leaf will perform a full opening...

5. Once the procedure is completed, the display will read [Travel calibr OK] for a few seconds.

6. ... after which, the M1 gate leaf will also perform a full opening.

Memory Roll Card

For memorizing user and system configuration data, then using them on another control board.
[ad After memorizing the data, it is best to remove the Memory Roll card while the control board is in operation.

ERROR MESSAGE

Ea Error messages appear on the display.

[Encoder - ERROR], [Error!]	Broken encoder or wrong connection.
[Safety test - ERROR]	Safety devices malfunctioning.
[Endstop - ERROR]	Malfunctioning endstop contacts
[Cycle Time - ERROR]	Insufficient working time
[Safety - STOP], [C1], [C3], [C4], [C7] or [C8]	Malfunctioning safety devices or wrong connection

DIAGRAM OF THE SLOWDOWN AND FINAL APPROACH POINTS AND FOR THE ENCODER DEVICE

[Dal The run area and slowdown and approach points are tested according to the parameters set forth by Technical Standards EN 12455 and EN 12453 for compliance with the impact forces generated by the running leaves.

A = Normal speed
B* = Slowed-down speed
C = Encoder intervention zone with movement inversion
D = Encoder intervention zone with movement stopped
E = Opening slow-down starting point [M1 Appr.AP \%]
F = Closing slow-down starting point [M1 Slow.CH\%]
G = Opening slow-down starting point [M2 Slow. AP \%]
H = Closing slow-down starting point [M2 Slow. CH\%]
$\left.\right|^{* *}=$ Closing approach starting point [M1 Appr.CH \%]
$\mathrm{L}^{* *}=$ Closing approach starting point [M2 Appr.CH \%]
M = Opening slow-down starting point [M1 Appr. AP \%]
$\mathrm{N}=$ Opening slow-down starting point [M2 Appr. AP \%]
0 = Strike plates

* Minimum 600 mm from the strike plate.
** Set the final approach percentage for the [M1 Appr.CH \%] function for M1 and [M2 Appr.CH \%] for M2 from the [ENCODER] menu so as to obtain a distance of between 1 and 50 mm maximum from the final strike plate point.

DISMANTLING AND DISPOSAL

Always make sure you comply with local laws before dismantling and disposing of the product. The packaging materials (cardboard, plastic, and so on) should be disposed of as solid urban waste, and simply separated from other waste for recycling.
Other components (control boards, batteries, transmitters, and so on) may contain hazardous pollutants. These must therefore be disposed of by authorized, certified professional services.
DISPOSE OF PROPERLY!

DECLARATION OF CONFORMITY

ce Declaration - Came S.p.A. declares that this device conforms to the essential, pertinent requirements provided by directives 2004/108/ EC and 2006/42/EC.
An original copy of the declaration of conformity is available on request.

Came S.p.A.
parkare li)

